歡迎來(lái)到江蘇氫港新能源科技有限公司網(wǎng)站!
0512-585889661 燃料電池備用電源系統設計
燃料電池存在的不足,使得其作為獨立的備用電源需要注意以下問(wèn)題:工作電源掉電實(shí)時(shí)監測及備用電源不間斷切換;燃料電池啟動(dòng)輔助電源設計及管理;燃料電池備用電源系統狀態(tài)監測;燃料電池備用電源功率補償控制。
1.2 工作原理
燃料電池備用電源系統在啟動(dòng)后實(shí)時(shí)監測工作電源的供電狀態(tài)及備用電源系統本身的狀態(tài),并通過(guò)人機接口與遠程監控中心進(jìn)行狀態(tài)參數傳輸。系統控制單元根據工作電源的供電狀態(tài)、蓄電池的SOC、備用系統狀態(tài)等控制備用電源系統中燃料電池發(fā)電系統的啟動(dòng)與停止、蓄電池的充放電、備用電源的投入與切除。
在備用電源系統安裝完成后,閉合開(kāi)關(guān)K1為負載設備供電,同時(shí)燃料電池備用電源控制系統自動(dòng)啟動(dòng),再閉合開(kāi)關(guān)K2接入蓄電池。備用電源系統啟動(dòng)后首先對系統進(jìn)行初始化設置,然后進(jìn)行工作電源供電狀態(tài)監測。當系統監測到工作電源供電正常時(shí),備用電源進(jìn)入待機工作模式:燃料電池發(fā)電系統停止發(fā)電,斷開(kāi)DK切除蓄電池供電,同時(shí)根據蓄電池的SOC對蓄電池進(jìn)行充電管理;當系統監測到工作電源供電中斷時(shí),系統控制器立即閉合開(kāi)關(guān)DK,切換到蓄電池供電工作模式:蓄電池一方面為負載供電,另一方面為系統控制單元啟動(dòng)燃料電池發(fā)電系統發(fā)電提供啟動(dòng)電源。當備用電源工作在蓄電池供電模式時(shí),系統控制器根據工作電源是否恢復供電、燃料電池輸出是否穩定、蓄電池SOC是否達到下限進(jìn)行狀態(tài)切換。在燃料電池輸出不穩定、工作電源恢復供電時(shí),自動(dòng)切除備用電源供電,停止燃料電池發(fā)電系統發(fā)電,同時(shí)備用電源進(jìn)入待機工作模式,負載轉由工作電源供電;當系統監測到燃料電池輸出穩定、工作電源未恢復供電時(shí),系統轉入燃料電池供電模式:系統控制單元啟動(dòng)DC/DC變換器,同時(shí)切換到燃料電池供電工作模式,負載設備轉為由燃料電池供電;當備用電源工作在燃料電池供電模式時(shí),系統控制單元監測到工作電源供電恢復后,備用電源轉入待機工作模式,同時(shí)停止燃料電池發(fā)電,負載轉由工作電源供電。備用電源各工作模式切換示意圖如圖2所示。
圖2 工作模式切換示意圖
1.3.1 蓄電池充電控制策略
備用電源工作在待機模式時(shí),系統控制器在監測系統狀態(tài)的同時(shí)啟動(dòng)蓄電池充電。蓄電池充電管理單元通過(guò)檢測蓄電池當前的SOC,并根據設置的SOC上限值SOCh及下限值SOCl控制對蓄電池的充放電。在SOC達到SOCh時(shí),停止對蓄電池充電;當SOC低于SOCh時(shí),開(kāi)始對蓄電池進(jìn)行充電。其充電控制策略為:
備用電源工作在燃料電池供電模式時(shí),若燃料電池輸出功率PFC大于負載需求功率PLoad,系統控制單元將啟動(dòng)蓄電池充電管理單元對蓄電池進(jìn)行充電,其充電控制策略與備用電源工作在待機模式時(shí)的充電控制策略相同。
1.3.3 電壓閾值補償控制策略
備用電源處于燃料電池供電模式時(shí),系統控制單元根據燃料電池輸出功率PFC、負載需求功率PLoad、蓄電池SOC等補償負載功率突變,其補償思想為:
如何檢測備用電源中燃料電池輸出功率小于負載需求功率是功率補償控制的關(guān)鍵。由于燃料電池備用電源直流輸出額定電壓為Uo,其允許連接的直流負載額定電壓即為Uo,當監測到輸出直流母線(xiàn)電壓低于設計的額定電壓Uo時(shí),說(shuō)明負載需求功率大于燃料電池輸出功率,導致直流母線(xiàn)電壓下降。因此可以設置一個(gè)直流母線(xiàn)電壓閾值下限UTL及上限UTH。當直流輸出電壓Uo小于閾值UTL時(shí),說(shuō)明負載需求功率超過(guò)燃料電池輸出功率,此時(shí)需要切入蓄電池進(jìn)行功率補償,同時(shí)控制燃料電池發(fā)電系統增大功率輸出;當直流母線(xiàn)電壓Uo大于等于閾值UTH時(shí),說(shuō)明燃料電池輸出功率已達到負載需求功率,此時(shí)可切除蓄電池的功率補償,同時(shí)根據蓄電池的SOC對蓄電池進(jìn)行充電。電壓閾值補償控制策略為:
2.1 工作電源斷電檢測
工作電源中斷與恢復的實(shí)時(shí)檢測將影響到備用電源的不間斷切換時(shí)間,可以選擇圖1中的點(diǎn)a或b進(jìn)行工作電源斷電檢測。點(diǎn)a處為交流,需采用交流檢測技術(shù);點(diǎn)b處為直流,可采用分壓比較檢測技術(shù)。
對于直流供電一般是市電經(jīng)AC/DC變換器轉換成直流后給負載供電,由于A(yíng)C/DC變換器輸出端有一定容量的電容,所以通過(guò)點(diǎn)b檢測斷電信息有一定的延時(shí),不能準確檢測到市電斷電時(shí)刻,導致系統控制單元不能在斷電瞬間投入備用電源而使負載存在斷電的危險。經(jīng)過(guò)實(shí)際試驗測試,通過(guò)點(diǎn)b進(jìn)行斷電檢測,其延遲時(shí)間約為50ms,不能滿(mǎn)足備用電源不間斷切換的要求。由于點(diǎn)a能直接反映出市電斷電瞬間的信息而不存在延遲,故選擇在點(diǎn)a進(jìn)行檢測,在交流斷電瞬間即可檢測到斷電信息,其檢測電路原理圖如圖4所示。
圖4 工作電源斷電檢測原理圖
交流220V首先經(jīng)過(guò)整流二極管VD1—VD4整流成高壓脈動(dòng)直流,然后經(jīng)光耦隔離產(chǎn)生斷電信號。此處光耦起到電氣隔離的作用以避免對主控制器產(chǎn)生干擾及進(jìn)行信號電平匹配。當交流有電時(shí)光耦導通,檢測信號ACST為高電平;當交流斷電時(shí)光耦截止,檢測信號ACST為低電平。經(jīng)實(shí)際測試,此檢測電路的檢測時(shí)間約為10ms。
2.3 CAN通信接口
CAN總線(xiàn)是工業(yè)控制局域網(wǎng)的標準總線(xiàn),屬于現場(chǎng)總線(xiàn)的范疇,它是一種有效支持分布式控制或實(shí)時(shí)控制的串行通信總線(xiàn),具有通信實(shí)時(shí)性強、速率高、傳輸距離遠等優(yōu)點(diǎn)。因此系統控制單元采用CAN通信接口與燃料電池發(fā)電系統及遠端監控中心進(jìn)行參數、命令傳輸,能保證通信的實(shí)時(shí)、穩定。
由于C8051F040內部集成的CAN控制器是一個(gè)協(xié)議控制器,它并沒(méi)有提供物理層的收發(fā)功能,要實(shí)現與CAN總線(xiàn)的通信接口,需要增加外部CAN收發(fā)控制器,實(shí)現CAN通信數據幀的收發(fā),其接口原理圖如圖6所示。
圖6 CAN通信接口電路
CAN總線(xiàn)信號CANTX和CANRX經(jīng)過(guò)高速光耦6N137進(jìn)行電氣隔離,再經(jīng)CAN總線(xiàn)收發(fā)器接口芯片SN65HVD230驅動(dòng)后接到CAN總線(xiàn)上。光耦6N137實(shí)現CAN節點(diǎn)與CAN總線(xiàn)間的電氣隔離,提高節點(diǎn)可靠性,并保護CAN總線(xiàn)上的其他節點(diǎn)。
3 系統控制單元工作流程
燃料電池備用電源系統控制單元是系統的控制核心,主要負責系統參數的采集、蓄電池充放電控制、燃料電池發(fā)電控制、供電電源不間斷切換及負載功率補償等。備用電源系統具有3種工作模式:待機模式、蓄電池供電模式、燃料電池供電模式,不同模式下系統控制單元的任務(wù)不同,其控制單元工作流程如圖7所示。
圖7 工作流程圖
燃料電池備用電源系統啟動(dòng)后,根據工作電源的供電情況進(jìn)入待機模式或蓄電池供電模式。若備用電源在工作電源供電正常時(shí)啟動(dòng),則啟動(dòng)后備用電源進(jìn)入待機模式,此時(shí)系統控制單元只負責監測備用電源系統的待機狀態(tài)參數、控制蓄電池充電及備用電源異常報警。當工作電源突然斷電時(shí),控制單元立即檢測到斷電信號,先停止對蓄電池的充電,然后閉合開(kāi)關(guān)DK,由蓄電池為負載提供電源,切換到蓄電池供電模式,同時(shí)啟動(dòng)燃料電池發(fā)電。在燃料電池輸出穩定之前,備用電源一直工作在蓄電池供電模式。當系統控制單元檢測到燃料電池輸出穩定后,控制單元啟動(dòng)DC/DC變換器,轉為燃料電池給負載供電。如果此時(shí)燃料電池輸出功率PFC大于負載需求功率PLoad即Uo>UTH時(shí),則控制單元斷開(kāi)開(kāi)關(guān)DK,切除蓄電池供電,并根據蓄電池當前SOC決定是否啟動(dòng)對蓄電池充電;如果負載突然增加或者燃料電池輸出功率PFC小于負載需求功率PLoad即Uo<UTL時(shí),則控制單元閉合開(kāi)關(guān)DK切入蓄電池,由蓄電池、燃料電池共同為負載提供功率,實(shí)現燃料電池輸出功率不足時(shí),由蓄電池進(jìn)行動(dòng)態(tài)功率補償,保障負載設備的穩定、可靠運行。
4 測試與分析
根據所提燃料電池備用電源系統結構及系統控制策略,研制了一臺3kW燃料電池備用電源樣機。備用電源選用的燃料電池輸出電壓范圍為30~40V,凈輸出功率為3.5kW,蓄電池容量為60A·h。設計的備用電源輸出電壓為直流48V,功率為3kW。
4.2 工作模式切換測試
利用10kW電子負載代替實(shí)際直流負載設備,按照圖1所示的系統結構搭建試驗測試平臺,并將電子負載功率調節到3kW,對研制的燃料電池備用電源系統進(jìn)行測試。在市電正常的情況下突然斷開(kāi)市電、在燃料電池供電模式下突然恢復市電供電,用示波器觀(guān)測直流母線(xiàn)電壓曲線(xiàn)變化情況見(jiàn)圖9。
圖9 模式切換時(shí)直流母線(xiàn)電壓曲線(xiàn)圖
圖9(a)是在燃料電池處于待機模式時(shí),市電斷電瞬間系統控制自動(dòng)切換到蓄電池供電模式的電壓曲線(xiàn),圖中蓄電池供電電壓只有44.4V,這是由多次試驗后蓄電池容量降低導致的,示波器捕捉的切換時(shí)間大約為20ms。從圖中可以看到在負載功率為3kW的整個(gè)切換過(guò)程中,負載供電沒(méi)有中斷,只是發(fā)生了一定電壓跌落,導致電壓跌落的原因是蓄電池在多次試驗后容量不足。圖9(b)是在燃料電池輸出穩定后切換到燃料電池供電時(shí)的電壓波形圖。市電恢復供電時(shí)切換波形圖如圖9(c)所示。在燃料電池供電正常的情況下突然恢復交流供電,當市電突然恢復正常供電后,系統控制單元立即檢測到交流供電恢復信號ACST為高,并按照設計的控制策略先發(fā)送停止燃料電池發(fā)電命令(圖中①處波形),同時(shí)切換到蓄電池供電模式。在燃料電池發(fā)電系統確認燃料電池停止發(fā)電后,系統控制單元立即切換到交流供電(圖中②處波形),并切除蓄電池供電進(jìn)入待機模式。示波器捕捉的由蓄電池模式恢復交流供電的切換時(shí)間大約為40ms。
5 結論
針對目前備用電源系統存在的不足及燃料電池良好的應用前景,本文提出基于燃料電池的備用電源系統結構及其控制策略,替代傳統的蓄電池或柴油發(fā)電機備用電源,可延長(cháng)備電時(shí)間、縮短切換時(shí)間、降低環(huán)境污染。隨著(zhù)燃料電池技術(shù)的不斷發(fā)展,燃料電池制造成本的下降,配套設施的逐漸完善,燃料電池作為一種高效節能、環(huán)境友好的發(fā)電裝置,必將在備用電源中得到廣泛的應用。
文章來(lái)源:《
》,作者
聲明:本網(wǎng)站基于分享的目的轉載,轉載文章的版權歸原作者或原公眾號所有,如有涉及侵權請及時(shí)告知,我們將予以核實(shí)并刪除。